organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(3,5-dimethoxyphenyl)phosphinic acid

Wei Cheng,^a* Zhi-Qiang Feng^b and Jun-Mei Tang^a

^aDepartment of Biological and Chemical Engineering, Chien-Shiung Institute of Technology, Taicang 215411, Suzhou, People's Republic of China, and ^bSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China

Correspondence e-mail: larry_18@163.com

Received 17 February 2011; accepted 6 March 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.162; data-to-parameter ratio = 14.5.

In the crystal structure of the title compound, $C_{16}H_{19}O_6P$, intermolecular $O-H \cdots O$ interactions link the molecules into chains parallel to the *b* axis. These chains are linked by $C-H \cdots \pi$ and $\pi - \pi$ interactions [centroid–centroid distance = 3.7307 (29) Å] into a three-dimensional network. The dihedral angle between the benzene rings is 73.5 (1)°. The C and O atoms of all four methoxy groups lie very close to the mean planes of their attached rings; the C atoms are 0.055 (2)– 0.1038 (1) Å out of the mean plane of the attached rings.

Related literature

For standard bond lengths, see: Allen *et al.* (1987). For the synthesis of the title compound, see: Watson *et al.* (2006).

Experimental

Crystal data $C_{16}H_{19}O_6P$ $M_r = 338.28$

Monoclinic, $P2_1/n$ *a* = 14.554 (3) Å

b = 7.7620 (16) Å	
c = 14.634 (3) Å	
$\beta = 96.14 (3)^{\circ}$	
V = 1643.7 (6) Å ³	
$\mathbf{Z} = \mathbf{A}$	

Data collection

Enraf-Nonius CAD-4	3014 independent reflections
diffractometer	2136 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.032$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.944, \ T_{\max} = 0.981$	reflections
3138 measured reflections	intensity decay: 1%

Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

T = 298 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	208 parameters
$wR(F^2) = 0.162$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
3014 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C7–C12 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O5-H5A\cdots O6^{i}$ $C14-H14B\cdots Cg2^{ii}$	0.82 0.96	1.71 2.90	2.482 (3) 3.571 (4)	155 128	
Symmetry codes: (i) $-r + \frac{3}{2}v + \frac{1}{2} - z + \frac{1}{2}$ (ii) $-r + 2 - v - z + 1$					

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y, -z + 1.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University, for the support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2080).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watson, D. A., Chiu, M. & Bergman, R. G. (2006). Organometallics, 25, 4731– 4733.

Acta Cryst. (2011). E67, 0896 [doi:10.1107/S1600536811008440]

Bis(3,5-dimethoxyphenyl)phosphinic acid

W. Cheng, Z.-Q. Feng and J.-M. Tang

Comment

The title compound, bis(3,5-dimethoxyphenyl)phosphinic acid (I) is an important intermediate for preparing metal phosphine complexes.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

The dihedral angle between ring 1 (C1—C6) and ring 2 (C7—C12) is 73.5 (1)°. The P atom is situated close to the best planes through the benzene rings (deviation P of -0.054 (1) and 0.014 (1) Å for ring 1 and 2, respectively).

The C and O atoms of all methoxy groups lie very close to the mean planes of their attached rings. The C13 and C14 atoms of methoxy groups are 0.064 (1) and 0.1038 (1) Å, respectively, out of the C1–C6 mean plane. The C15 and C16 atoms are 0.055 (2) and 0.096 (1) Å, respectively, out of the C7–C8 mean plane.

In the crystal structure, intermolecular O—H···O interactions link the molecules into chains parallel to the b-direction (Table 1, Fig. 2). These chains are linked by C—H··· π (Table 1) and π — π interactions [distance Cg1··· $Cg1^{ii} = 3.7307$ (29) Å where Cg1 is the centroid of C1—C6; symmetry code ii: 2 - *x*,-*y*,1 - *z*] to give a three-dimensional network, which seems to be very effective in the stabilization of the crystal structure (Fig. 2).

Experimental

The title compound was synthesized by the reaction of dimethoxyphenyl bromide, t-BuLi, *N*,*N*-dimethylphosphoramic dichloride in aqueous HCl and THF (Watson *et al.*, 2006). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (50 mg) in ethyl acetate (10 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93 and 0.96 Å for aromatic and methoxy H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for phenyl H and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The crystal structure of (I). Dashed lines indicate hydrogen bonds or $\pi - \pi$ interactions

Bis(3,5-dimethoxyphenyl)phosphinic acid

Crystal data

C ₁₆ H ₁₉ O ₆ P	F(000) = 712
$M_r = 338.28$	$D_{\rm x} = 1.367 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
a = 14.554 (3) Å	$\theta = 10-14^{\circ}$
b = 7.7620 (16) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 14.634(3) Å	<i>T</i> = 298 K
$\beta = 96.14 (3)^{\circ}$	Block, colorless
$V = 1643.7 (6) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	2136 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.032$
graphite	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 17$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 9$
$T_{\min} = 0.944, \ T_{\max} = 0.981$	$l = -17 \rightarrow 17$
3138 measured reflections	3 standard reflections every 200 reflections
3014 independent reflections	intensity decay: 1%

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.162$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3014 reflections	$(\Delta/\sigma)_{max} < 0.001$
208 parameters	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotropic	or e	quivalent	isotrop	oic dis	placement	parameters ($(Å^2$)
				· · · · · · · · · · · ·						p	/	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Р	0.84250 (5)	0.16050 (10)	0.25720 (5)	0.0347 (2)
01	0.83620 (18)	-0.2020 (3)	0.55369 (14)	0.0568 (7)
C1	0.84208 (19)	-0.0319 (4)	0.41535 (19)	0.0369 (7)
H1A	0.8151	-0.1182	0.3774	0.044*
O2	0.96481 (18)	0.3582 (3)	0.57873 (15)	0.0582 (7)
C2	0.8584 (2)	-0.0570 (4)	0.5091 (2)	0.0388 (7)
O3	0.9727 (2)	-0.3021 (4)	0.0512 (2)	0.0853 (10)
C3	0.8993 (2)	0.0712 (4)	0.5657 (2)	0.0417 (7)
H3A	0.9099	0.0529	0.6287	0.050*
O4	1.17640 (19)	0.1274 (4)	0.1644 (2)	0.0833 (9)
C4	0.9241 (2)	0.2244 (4)	0.5293 (2)	0.0403 (7)
O5	0.85561 (14)	0.3545 (3)	0.23979 (14)	0.0429 (5)
H5A	0.8125	0.4084	0.2577	0.064*
C5	0.9083 (2)	0.2521 (4)	0.4345 (2)	0.0397 (7)
H5B	0.9256	0.3556	0.4093	0.048*
O6	0.74981 (14)	0.0893 (3)	0.22249 (13)	0.0432 (5)
C6	0.86672 (19)	0.1244 (4)	0.37875 (19)	0.0342 (7)
C7	0.9317 (2)	0.0648 (4)	0.19870 (19)	0.0388 (7)

C8	1.0195 (2)	0.1405 (4)	0.2072 (2)	0.0482 (8)
H8A	1.0313	0.2393	0.2424	0.058*
C9	1.0885 (2)	0.0655 (5)	0.1622 (2)	0.0570 (9)
C10	1.0691 (3)	-0.0832 (5)	0.1110 (3)	0.0669 (11)
H10A	1.1156	-0.1346	0.0816	0.080*
C11	0.9820 (3)	-0.1564 (5)	0.1027 (2)	0.0577 (9)
C12	0.9129 (2)	-0.0827 (4)	0.1475 (2)	0.0469 (8)
H12A	0.8544	-0.1320	0.1431	0.056*
C13	0.7992 (3)	-0.3423 (4)	0.5002 (2)	0.0583 (9)
H13A	0.7871	-0.4362	0.5399	0.087*
H13B	0.8426	-0.3782	0.4591	0.087*
H13C	0.7426	-0.3076	0.4653	0.087*
C14	0.9762 (3)	0.3417 (5)	0.6759 (2)	0.0683 (11)
H14A	1.0051	0.4436	0.7026	0.102*
H14B	1.0143	0.2434	0.6929	0.102*
H14C	0.9169	0.3269	0.6979	0.102*
C15	0.8843 (4)	-0.3867 (6)	0.0433 (3)	0.0889 (15)
H15A	0.8867	-0.4879	0.0059	0.133*
H15B	0.8379	-0.3097	0.0154	0.133*
H15C	0.8695	-0.4190	0.1033	0.133*
C16	1.1963 (3)	0.2843 (7)	0.2119 (4)	0.0937 (16)
H16A	1.2597	0.3150	0.2083	0.141*
H16B	1.1859	0.2707	0.2752	0.141*
H16C	1.1569	0.3736	0.1845	0.141*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Р	0.0339 (4)	0.0366 (4)	0.0325 (4)	0.0010 (3)	-0.0014 (3)	0.0043 (3)
01	0.0837 (18)	0.0470 (14)	0.0378 (12)	-0.0164 (12)	-0.0022 (11)	0.0083 (10)
C1	0.0355 (15)	0.0396 (16)	0.0347 (15)	-0.0025 (13)	-0.0010 (12)	-0.0011 (13)
O2	0.0813 (17)	0.0495 (14)	0.0405 (12)	-0.0168 (13)	-0.0085 (11)	-0.0039 (11)
C2	0.0410 (17)	0.0379 (17)	0.0370 (16)	-0.0002 (14)	0.0009 (13)	0.0034 (13)
O3	0.106 (2)	0.0688 (19)	0.088 (2)	-0.0052 (17)	0.0441 (18)	-0.0322 (16)
C3	0.0444 (17)	0.0488 (19)	0.0308 (15)	0.0022 (15)	-0.0016 (13)	0.0010 (14)
O4	0.0547 (16)	0.099 (2)	0.102 (2)	-0.0111 (16)	0.0322 (15)	-0.0187 (19)
C4	0.0409 (17)	0.0399 (17)	0.0384 (16)	-0.0004 (14)	-0.0039 (13)	-0.0040 (14)
O5	0.0405 (12)	0.0402 (12)	0.0480 (12)	0.0013 (10)	0.0044 (9)	0.0060 (10)
C5	0.0435 (17)	0.0362 (17)	0.0386 (16)	-0.0003 (14)	0.0014 (13)	0.0027 (14)
O6	0.0406 (12)	0.0478 (13)	0.0391 (11)	-0.0042 (10)	-0.0060 (9)	0.0079 (10)
C6	0.0290 (15)	0.0383 (16)	0.0345 (15)	0.0030 (12)	-0.0002 (12)	-0.0010 (13)
C7	0.0448 (18)	0.0412 (17)	0.0302 (15)	0.0056 (14)	0.0025 (13)	0.0041 (13)
C8	0.0483 (19)	0.054 (2)	0.0426 (17)	-0.0002 (16)	0.0067 (15)	-0.0035 (15)
C9	0.049 (2)	0.070 (2)	0.055 (2)	0.0012 (18)	0.0166 (16)	0.0011 (19)
C10	0.071 (3)	0.069 (3)	0.066 (2)	0.009 (2)	0.031 (2)	-0.004 (2)
C11	0.079 (3)	0.053 (2)	0.0446 (19)	0.003 (2)	0.0201 (18)	-0.0024 (17)
C12	0.052 (2)	0.0481 (19)	0.0411 (17)	0.0011 (16)	0.0081 (15)	0.0012 (16)
C13	0.077 (3)	0.047 (2)	0.051 (2)	-0.0154 (19)	0.0073 (18)	0.0025 (17)

C14	0.096 (3)	0.066 (3)	0.0411 (19)	-0.021 (2)	-0.0045 (19)	-0.0060 (19)	
C15	0.118 (4)	0.065 (3)	0.086 (3)	-0.017 (3)	0.024 (3)	-0.025 (2)	
C16	0.062 (3)	0.121 (4)	0.103 (4)	-0.027 (3)	0.030 (3)	-0.020(3)	
Geometric param	neters (Å, °)						
P06		1.496 (2)	С7—С	212	1.3	79 (4)	
P05		1.542 (2)	С7—С	28	1.400 (4)		
Р—С7		1.791 (3)	C8—C	29	1.3	87 (5)	
Р—С6		1.798 (3)	C8—H	I8A	0.9	300	
O1—C2		1.357 (4)	С9—С	210	1.3	89 (5)	
O1—C13		1.414 (4)	C10—	C11	1.3	83 (5)	
C1—C2		1.381 (4)	C10—	H10A	0.9	300	
C1—C6		1.389 (4)	C11—	C12	1.3	81 (5)	
C1—H1A		0.9300	C12—	H12A	0.9	300	
O2—C4		1.365 (4)	C13—	H13A	0.9	600	
O2—C14		1.419 (4)	C13—	H13B	0.9	600	
C2—C3		1.388 (4)	C13—	H13C	0.9	600	
O3—C11		1.358 (4)	C14—	H14A	0.9	600	
O3—C15		1.437 (5)	C14—	H14B	0.9	600	
C3—C4		1.367 (4)	C14—	H14C	0.9	600	
С3—НЗА		0.9300	C15—	H15A	0.9	600	
O4—C9		1.363 (4)	C15—	H15B	0.9	600	
O4—C16		1.417 (5)	C15—	H15C	0.9	600	
C4—C5		1.397 (4)	C16—	H16A	0.9	600	
O5—H5A		0.8200	C16—	H16B	0.9	0.9600	
C5—C6		1.382 (4)	C16—	H16C	0.9	600	
C5—H5B		0.9300					
O6—P—O5		115.32 (12)	04—0	C9—C10	116	5.3 (3)	
O6—P—C7		110.96 (14)	C8—C	C9—C10	119	9.2 (3)	
O5—P—C7		102.55 (13)	C11—	С10—С9	121	1.4 (3)	
O6—P—C6		110.65 (13)	C11—	C10—H10A	119	9.3	
O5—P—C6		107.51 (13)	С9—С	C10—H10A	119	9.3	
C7—P—C6		109.45 (13)	03—0	C11—C12	125	5.0 (4)	
C2—O1—C13		117.9 (2)	03—0	C11—C10	115	5.3 (3)	
C2—C1—C6		118.9 (3)	C12—	C11—C10	119	9.7 (3)	
C2—C1—H1A		120.6	С7—С	C12—C11	119	9.3 (3)	
C6-C1-H1A		120.6	С7—С	C12—H12A	120).3	
C4—O2—C14		117.4 (3)	C11—	C11—C12—H12A).3	
O1—C2—C1		124.8 (3)	01—0	С13—Н13А	109	9.5	
O1—C2—C3		114.6 (3)	01—0	С13—Н13В	109	9.5	
C1—C2—C3		120.6 (3)	H13A-	—С13—Н13В	109	9.5	
C11—O3—C15		117.4 (3)	01—0	O1-C13-H13C		9.5	
C4—C3—C2		120.4 (3)	H13A-	—С13—Н13С	109	9.5	
С4—С3—Н3А		119.8	H13B-	—С13—Н13С	109	9.5	
С2—С3—НЗА		119.8	02—0	C14—H14A	109	9.5	
C9—O4—C16		117.2 (3)	02—0	C14—H14B	109	9.5	
O2—C4—C3		124.9 (3)	H14A-		109	9.5	
O2—C4—C5		115.2 (3)	O2—C14—H14C		109	9.5	

C2 C4 C5	110.0(2)	U14A $C14$ $U14C$	100.5
C_{3}	119.9 (3)	H14A - C14 - H14C	109.5
P-05-H5A	109.5	$\Pi H = 0.14 - \Pi H = 0.02$	109.5
$C_0 = C_3 = C_4$	119.4 (3)	O3-CI5-HISA	109.5
С6—С5—Н5В	120.3	U3-CI5-HISB	109.5
С4—С5—Н5В	120.3	HISA—CIS—HISB	109.5
C5-C6-C1	120.9 (3)	03-CI5-HI5C	109.5
С5—С6—Р	120.0 (2)	Н15А—С15—Н15С	109.5
C1—C6—P	119.1 (2)	H15B—C15—H15C	109.5
C12—C7—C8	121.5 (3)	O4—C16—H16A	109.5
C12—C7—P	119.5 (2)	O4—C16—H16B	109.5
С8—С7—Р	119.0 (2)	H16A—C16—H16B	109.5
C9—C8—C7	118.9 (3)	O4—C16—H16C	109.5
С9—С8—Н8А	120.6	H16A—C16—H16C	109.5
С7—С8—Н8А	120.6	H16B—C16—H16C	109.5
04—C9—C8	124.5 (4)		
C13—O1—C2—C1	4.3 (5)	O6—P—C7—C12	-14.6 (3)
C13—O1—C2—C3	-176.4 (3)	O5—P—C7—C12	-138.3 (2)
C6—C1—C2—O1	178.8 (3)	C6—P—C7—C12	107.8 (3)
C6—C1—C2—C3	-0.5 (4)	O6—P—C7—C8	166.3 (2)
O1—C2—C3—C4	-179.4 (3)	O5—P—C7—C8	42.6 (3)
C1—C2—C3—C4	0.0 (5)	C6—P—C7—C8	-71.3 (3)
C14—O2—C4—C3	-4.7 (5)	C12—C7—C8—C9	0.6 (5)
C14—O2—C4—C5	175.5 (3)	Р—С7—С8—С9	179.7 (2)
C2—C3—C4—O2	-179.9 (3)	C16—O4—C9—C8	-3.7 (6)
C2—C3—C4—C5	-0.1 (5)	C16—O4—C9—C10	176.5 (4)
O2—C4—C5—C6	-179.5 (3)	C7—C8—C9—O4	179.5 (3)
C3—C4—C5—C6	0.7 (5)	C7—C8—C9—C10	-0.7 (5)
C4—C5—C6—C1	-1.2 (4)	O4—C9—C10—C11	-179.1 (4)
C4—C5—C6—P	178.0 (2)	C8—C9—C10—C11	1.0 (6)
C2—C1—C6—C5	1.1 (4)	C15—O3—C11—C12	-0.6 (6)
C2—C1—C6—P	-178.1 (2)	C15-03-C11-C10	177.8 (4)
O6—P—C6—C5	-139.0 (2)	C9—C10—C11—O3	-179.6 (3)
O5—P—C6—C5	-12.2 (3)	C9—C10—C11—C12	-1.2 (6)
C7—P—C6—C5	98.4 (3)	C8—C7—C12—C11	-0.7(5)
O6—P—C6—C1	40.2 (3)	P—C7—C12—C11	-179.8 (2)
O5—P—C6—C1	167.0 (2)	O3—C11—C12—C7	179.2 (3)
C7—P—C6—C1	-82.3 (2)	C10-C11-C12-C7	1.0 (5)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 ring	•			
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O5—H5A···O6 ⁱ	0.82	1.71	2.482 (3)	155
C14—H14B····Cg2 ⁱⁱ	0.96	2.90	3.571 (4)	128
Symmetry codes: (i) $-x+3/2$, $y+1/2$, $-z+1/2$; (ii) $-x+2, -y, -z+1$.			

